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Abstract. The celebrated Sz.-Nagy and Foias and Ando theorems state that a single con-
traction, or a pair of commuting contractions, acting on a Hilbert space always possesses
isometric dilation and subsequently satisfies the von Neumann inequality for polynomials in
C[z] or C[z1, z2], respectively. However, in general, neither the existence of isometric dilation
nor the von Neumann inequality holds for n-tuples, n ≥ 3, of commuting contractions. The
goal of this paper is to provide a taste of isometric dilations, von Neumann inequality and a
refined version of von Neumann inequality for a large class of n-tuples, n ≥ 3, of commuting
contractions.

1. Introduction

In this paper we investigate isometric dilation, von Neumann inequality and a refined
version of von Neumann inequality, in terms of algebraic variety in the polydisc Dn, for a
large class of n-tuples, n ≥ 3, of commuting contractions on Hilbert spaces. The set of all
ordered n-tuples of commuting contractions on a Hilbert space H will be denoted as T n(H),
that is

T n(H) = {(T1, . . . , Tn) : Ti ∈ B(H), ∥Ti∥ ≤ 1, TiTj = TjTi, 1 ≤ i, j ≤ n},

where B(H) denotes the set of all bounded linear operators on H. Here we are mostly
interested in n-tuples, n ≥ 3, of commuting contractions as it is well-known that a contraction,
or a pair of commuting contractions, admits isometric dilation and hence, satisfies the von
Neumann inequality (see Sz.-Nagy and Foias [24] and Ando [4]). A refined version of von
Neumann inequality, in the sense of algebraic varieties, also follows from the recent papers
[3], [13] and [14]. More specifically, here we are concerned with the validity of the following
three statements for tuples in T n(H).

Statement 1 (On isometric dilations): Let T ∈ T n(H). Then there exist a Hilbert space K(⊇ H)
and an n-tuple of commuting isometries V ∈ T n(K) such that T dilates to V .

Now any n-tuple of commuting isometries V ∈ T n(K) can be extended to an n-tuple of
commuting unitaries, that is, there exist a Hilbert space L containing K and an n-tuple of
commuting unitary operators U ∈ T n(L) which extends V [24]. Therefore, the celebrated
von Neumann inequality is an immediate consequence of Statement 1 (cf. [24]):
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Statement 2 (On von Neumann inequality): If T ∈ T n(H), then for all p ∈ C[z1, . . . , zn], the
following holds:

∥p(T )∥B(H) ≤ sup
z∈Dn

|p(z)|.

Here z denotes the element (z1, . . . , zn) in Cn, zi ∈ C, and Dn = {z ∈ Cn : |zi| < 1, i =
1, . . . , n}.

The next natural geometric and algebraic question to consider, after Agler and McCarthy
[3], is the existence of varieties in Dn in the von Neumann inequality:

Statement 3 (On a refined von Neumann inequality): Let T ∈ T n(H). Then there exists an
algebraic variety V , depending on T , in Dn (or in Dn) such that for all p ∈ C[z1, . . . , zn], the
following holds:

∥p(T )∥B(H) ≤ sup
z∈V

|p(z)|.

As we hinted earlier, Statement 2, and hence Statement 1, fails spectacularly in the sense
that the von Neumann inequality does not hold in general for n ≥ 3. This result is due
to Varopoulos [28] and Crabb and Davie [11]. On the other hand, by presenting a list of
elementary counterexamples, Parrott [25] proved that triples of commuting contractions do
not, in general, possess commuting isometric dilations. We refer the reader interested in deep
subtleties of von Neumann inequality for n-tuples of commuting contractions to Choi and
Davidson [9], Drury [16], Holbrook [19, 20], Knese [21], Kosiński [22] and Pisier [26].

We also point out here an important difference between the Sz.-Nagy and Foias dilation
[24] for contractions and Ando dilation [4] for pairs of commuting contractions. In the former
case, the dilating isometries are explicit in the sense of the classical Wold and von Neumann
decomposition [24]. In the latter case, dilating pairs of commuting isometries are complicated
and mostly unclassified. This leads us to a reformulation of Statement 1:
Statement 1* (On explicit isometric dilations): Let T ∈ T n(H). Then there exist a Hilbert space
K(⊇ H) and an n-tuple of explicit (or tractable) commuting isometries V ∈ T n(K) such that
T dilates to V .

We refer the reader to [3], [13] and [14] for classes of pairs of commuting contractions with
explicit (or tractable) dilating isometries.

The above discussion leads naturally to the question of determining n-tuples of opera-
tors in T n(H), n ≥ 3, satisfying Statements 1, 2, 3 and 1*. This research direction is still
mostly unexplored except for the work of Grinshpan, Kaliuzhnyi-Verbovetskyi, Vinnikov and
Woerdeman [18]. More specifically, and elegantly, Grinshpan, Kaliuzhnyi-Verbovetskyi, Vin-
nikov and Woerdeman [18] proved the validity of Statement 2 for a large class of n-tuples
of commuting strict contractions, n ≥ 3. In other words, if an n-tuple, n ≥ 3, of commut-
ing strict contractions T obeys certain positivity condition, then the open unit polydisc is a
spectral set for T . This also yields, following Arveson’s notion of completely bounded maps
(see [5], [6] and Corollary 4.9 in [26]), existence of unitary dilations for those n-tuples of
commuting strict contractions. The main stimulus for their work was provided by scattering
theory, Schur-Agler class of functions and de Branges-Rovnyak models [15] in several vari-
ables. This is also the spirit behind results by Cotlar and Sadosky [10], Agler and McCarthy
[1], Eschmeier and Putinar [17] and many more.
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In this paper, we introduce a large class, namely T n
p,q(H) (see Subsection 2.3), of n-tuples,

n ≥ 3, of commuting contractions and show that they dilate to n-tuples of explicit commuting
isometries. Therefore, Statement 1* and hence Statement 1 holds for tuples in T n

p,q(H). This
also allows us to prove the von Neumann inequality for tuples in T n

p,q(H) (that is, Statement 2
holds). In particular, in a larger context (see the examples in Subsection 2.3), we prove that
the Grinshpan, Kaliuzhnyi-Verbovetskyi, Vinnikov and Woerdeman’s n-tuples of operators
[18] admit explicit isometric dilations and hence yield the von Neumann inequality. Our
recipe even provides sharper results with new proofs of the results of Grinshpan, Kaliuzhnyi-
Verbovetskyi, Vinnikov and Woerdeman. Here, however, our treatment of dilations and von
Neumann inequality is conceptually different. Our von Neumann inequality is even stronger
for finite rank n-tuples of operators in the sense of algebraic varieties (and so, Statement 3
holds). Furthermore, our technique offers some geometric, analytic and algebraic structural
insight into the positivity assumptions of n-tuples of operators. Our methodology is motivated
by the Hilbert module approach to multivariable operator theory (cf. [27]).

The rest of the paper is organized as follows. Section 2 introduces terminology used through-
out this paper. This section also gives a list of motivating and non-trivial examples of tuples
of commuting contractions. Section 3 establishes the existence, with explicit constructions, of
isometric dilations for a large class of finite rank n-tuples of commuting contractions. Using
the isometric dilations, in Section 4, we obtain a refined version of von Neumann inequality (in
terms of an algebraic variety) for finite rank n-tuples of commuting contractions. Finally, in
Section 5 we consider the more general problem of describing isometric dilations for n-tuples
of commuting contractions. Sections 3 and 5 are independent of each other.

2. Definitions and Examples

This section is aimed at providing definitions, motivating examples and a known dilation
theorem on n-tuples of commuting contractions. First, we introduce some standard notation
that will be used in this paper. We denote

Zn
+ = {k = (k1, . . . , kn) : ki ∈ Z+, i = 1, . . . , n}.

Also for each multi-index k ∈ Zn
+, commuting tuple T = (T1, . . . , Tn) on a Hilbert space H,

and z ∈ Cn we denote

T k = T k1
1 · · ·T kn

n ,

and

zk = zk11 · · · zknn .

We begin with the definition of isometric dilations for n-tuples of commuting contractions.

2.1. Dilations of commuting tuples. Let H and K be Hilbert spaces, and let T ∈ T n(H)
and V ∈ T n(K). Then V is said to be an isometric dilation of T if V is an n-tuple of
commuting isometries and there exists an isometry Π : H → K such that ΠT ∗

i = V ∗
i Π for all

i = 1, . . . , n. We also say that T dilates to V .
In this case, for k ∈ Zn

+, we have

ΠT ∗k = V ∗kΠ,
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and so
ΠT ∗kΠ∗ = V ∗kΠΠ∗,

since
(ΠΠ∗)V ∗k(ΠΠ∗) = V ∗k(ΠΠ∗),

or, equivalently V ∗kQ ⊆ Q, where
Q = ran Π.

This immediately yields the following: (T1, . . . , Tn) on H and (PQV1|Q, . . . , PQVn|Q) on Q are
unitarily equivalent under the isometric isomorphism Π : H → Q, and

(PQV |Q)∗k = V ∗k|Q,
for all k ∈ Zn

+. Here PQ is the orthogonal projection of K onto Q. Therefore, the n-tuple
T has a power dilation to the n-tuple of commuting isometries V , in the classical sense of
Sz.-Nagy and Foias and Halmos.

The following example of isometric dilation is typical: Let H2(Dn), the Hardy space over
Dn, be the space of all analytic functions f =

∑
k∈Zn

+
akz

k on Dn for which the norm

∥f∥H2(Dn) = (
∑
k∈Zn

+

|ak|2)
1
2 < ∞.

Let (Mz1 , . . . ,Mzn) denote the n-tuple of multiplication operators on H2(Dn) defined by

(Mzif)(w) = wif(w),

for all f ∈ H2(Dn), w ∈ Dn and i = 1, . . . , n. Then (Mz1 , . . . ,Mzn) is an n-tuple of commut-
ing isometries (Mz1 , . . . ,Mzn) on the Hardy space H2(Dn). Now for a joint (M∗

z1
, . . . ,M∗

zn)-
invariant subspace Q of H2(Dn), consider

Tj = PQMzj |Q,
and

Π = i,

where i : Q ↪→ H2(Dn) is the natural inclusion map. Then

ΠT ∗
j = M∗

zj
Π,

for all j = 1, . . . , n. This implies that (Mz1 , . . . ,Mzn) on H2(Dn) is an isometric dilation of
(T1, . . . , Tn) on Q.

2.2. Hardy space and dilations. We denote by Sn the Szegö kernel on Dn, that is,

Sn(z,w) =
n∏

i=1

(1− ziw̄i)
−1,

for all z,w ∈ Dn. Then H2(Dn) is known to be a reproducing kernel Hilbert space with kernel
Sn. If E is a Hilbert space, then H2

E(Dn) denotes the E-valued Hardy space over Dn. Also as
usual, H2

E(Dn) will be identified with the Hilbert space tensor product H2(Dn) ⊗ E via the
natural unitary map zkη 7→ zk ⊗ η for all k ∈ Zn

+ and η ∈ E . It is a well-known fact that
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H2
E(Dn) is a reproducing kernel Hilbert space on Dn corresponding to the B(E)-valued kernel

function

(z,w) ∈ Dn × Dn → Sn(z,w)IE .

The n-tuple of multiplication operators (Mz1 , . . . ,Mzn) on H2
E(Dn) defined analogously by

(Mzif)(w) = wif(w),

for all f ∈ H2
E(Dn), w ∈ Dn and i = 1, . . . , n. Let H∞

B(E)(Dn) denote the set of all bounded

B(E)-valued analytic functions on Dn. The following is a well-known fact (cf. page 655 in
[7]): If X ∈ B(H2

E(Dn)), then XMzi = MziX if and only if X = MΘ for some Θ ∈ H∞
B(E)(Dn).

Now note that

S−1
n (z,w) =

∑
k∈{0,1}n

(−1)|k|zkw̄k,

where |k| =
∑

i ki, k ∈ Zn
+. With this motivation, for every T ∈ T n(H) we set

S−1
n (T, T ∗) =

∑
k∈{0,1}n

(−1)|k|T kT ∗k.

The set of all T ∈ T n(H) with S−1
n (T, T ∗) ≥ 0 will be denoted by Sn(H), that is

Sn(H) = {T ∈ T n(H) : S−1
n (T, T ∗) ≥ 0}.

A tuple T = (T1, . . . , Tn) ∈ T n(H) is said to be pure if ∥T ∗m
i h∥ → 0 for all h ∈ H and

i = 1, . . . , n.
The following theorem on pure n-tuples in Sn(H) is one of the most definite and significant

results in multivariable dilation theory (see [12] and [23]).

Theorem 2.1. Let T ∈ Sn(H) be a pure tuple. If

DT = S−1
n (T, T ∗)1/2,

and

DT = ran S−1
n (T, T ∗),

then Π : H → H2
DT

(Dn) defined by

(Πh)(z) =
∑
k∈Zn

+

zkDTT
∗kh,

for all z ∈ Dn and h ∈ H, is an isometry and ΠT ∗
i = M∗

zi
Π for all i = 1, . . . , n. In particular,

T on H dilates to (Mz1 , . . . ,Mzn) on H2
DT

(Dn).

In the sequel, the isometry Π defined in the above theorem will be referred to as canonical
isometry corresponding to T .
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2.3. Commuting tuples in T n
p,q(H). We now introduce the central object of this paper.

Let H be a Hilbert space, and let n ≥ 3 and 1 ≤ p < q ≤ n be fixed throughout the article.
Let T ∈ T n(H). For each i ∈ {1, . . . , n}, we define

T̂i = (T1, . . . , Ti−1, Ti+1, Ti+2, . . . , . . . , Tn) ∈ T (n−1)(H),

the (n− 1)-tuple obtained from T by removing Ti. Define

T n
p,q(H) = {T ∈ T n(H) : T̂p, T̂q ∈ Sn−1(H) and T̂p is pure}.

For example, let n = 3, p = 1 and q = 2. Then (T1, T2, T3) ∈ T 3
1,2(H) if and only if:

(i) ∥Ti∥ ≤ 1 for all i = 1, 2, 3,

(ii) T̂1 = (T2, T3) is pure (that is, ∥T ∗m
i h∥ → 0 as m → ∞ for all h ∈ H and i = 2, 3),

(iii) S−1
2 (T̂1, T̂

∗
1 ) = I − T2T

∗
2 − T3T

∗
3 + T2T3T

∗
2 T

∗
3 ≥ 0, and

(iv) S−1
2 (T̂2, T̂

∗
2 ) = I − T1T

∗
1 − T3T

∗
3 + T1T3T

∗
1 T

∗
3 ≥ 0.

Under the additional assumption that ∥Ti∥ < 1, i = 1, . . . , n, the above class of n-tuples of
commuting contractions has been studied, and denoted by Pn

p,q(H), by Grinshpan, Kaliuzhnyi-
Verbovetskyi, Vinnikov and Woerdeman in [18]. It is easy to see that ∥Ti∥ < 1, i = 1, . . . , n,
implies that (T1, . . . , Tn) is a pure tuple. More specifically, for every 1 ≤ p < q ≤ n, it is
immediate that

(Mz1 , . . . ,Mzn) ∈ T n
p,q(H

2(Dn)),

but
(Mz1 , . . . ,Mzn) /∈ Pn

p,q(H
2(Dn)),

and so
Pn

p,q(H
2(Dn)) ( T n

p,q(H
2(Dn)).

It should be noted, however, that Pn
p,q(H) is a dense subset of T n

p,q(H) for any Hilbert space

H. This follows from the fact that if T ∈ T n(H) and S−1
n (T, T ∗) ≥ 0, then for any 0 < r < 1

S−1
n (rT, rT ∗) ≥ 0,

where rT = (rT1, . . . , rTn).

2.4. Transfer functions. Our approach to isometric dilations and refined von Neumann
inequality will rely on the theory of transfer functions. Let H, E and E∗ be Hilbert spaces,
and let U : E ⊕H → E∗ ⊕H be a unitary operator. Assume that

U =

[
A B
C D

]
: E ⊕H → E∗ ⊕H.

Then the transfer function τU corresponding to U is defined by

τU(z) = A+Bz(IH −Dz)−1C,

for all z ∈ D. Since ∥D∥ ≤ 1, and so ∥zD∥ < 1 for all z ∈ D, it follows that τU is a B(E , E∗)-
valued analytic function on D. Moreover, a standard and well-known computation (cf. [2])
yields that

(2.1) I − τU(z)
∗τU(z) = (1− |z|2)C∗(IH − z̄D∗)−1(IH − zD)−1C,
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for all z ∈ D. In particular, τU ∈ H∞
B(E,E∗)(D) and ∥MτU∥ ≤ 1, that is, τU is a contractive

multiplier. We refer the reader to the monograph by Agler and McCarthy [2] for more details.

3. Dilations for finite rank tuples in T n
p,q(H)

Let T ∈ T n
p,q(H). We say that T is of finite rank if

dimDT̂i
< ∞,

for all i = p, q. In this section we find explicit dilation for a finite rank n-tuple of commuting
contractions in T n

p,q(H). Our (explicit) dilation result seems to be especially more useful in

studying refined von Neumann inequality. Recall that for T ∈ T n(H) and i ∈ {1, . . . , n}, T̂i

is defined as

T̂i = (T1, . . . , Ti−1, Ti+1, Ti+2, . . . , Tn) ∈ T (n−1)(H).

Let us also introduce the following notations, which will be extensively used in the sequel.
For T ∈ T n(H), define

(3.1) T̂p,q = (T1, . . . , Tp−1, Tp+1, . . . , Tq−1, Tq+1, . . . , Tn) ∈ T (n−2)(H),

the (n− 2)-tuple obtained from T by deleting Tp and Tq, and

(3.2) T̂pq = (T1, . . . , Tp−1, TpTq︸︷︷︸
pth place

, Tp+1, . . . , Tq−1, Tq+1, . . . , Tn) ∈ T (n−1)(H),

the (n− 1)-tuple obtained from T by removing Tq and replacing Tp by the product TpTq.
We begin with the following useful lemma on defect operators.

Lemma 3.1. If T ∈ T n
p,q(H), then

D2
T̂pq

= D2
T̂p

+ TqD
2
T̂q
T ∗
q = TpD

2
T̂p
T ∗
p +D2

T̂q
.

Proof. Since by definition

D2
T̂p,q

= S−1
n−2(T̂p,q, T̂

∗
p,q),

it follows that

D2
T̂p

= D2
T̂p,q

− TqD
2
T̂p,q

T ∗
q ,

and

D2
T̂q

= D2
T̂p,q

− TpD
2
T̂p,q

T ∗
p .

Then

D2
T̂pq

= S−1
n−1(T̂pq, T̂

∗
pq)

= D2
T̂p,q

− TpTqD
2
T̂p,q

T ∗
p T

∗
q

= D2
T̂p,q

− TpD
2
T̂p,q

T ∗
p + Tp(D

2
T̂p,q

− TqD
2
T̂p,q

T ∗
q )T

∗
p ,

that is

(3.3) D2
T̂pq

= D2
T̂q

+ TpD
2
T̂p
T ∗
p ,
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and similarly
D2

T̂pq
= D2

T̂p
+ TqD

2
T̂q
T ∗
q .

This completes the proof of the lemma. �
Therefore, if T ∈ T n

p,q(H), then it follows clearly from the above lemma that the map

U : {DT̂p
h⊕DT̂q

T ∗
q h : h ∈ H} → {DT̂p

T ∗
p h⊕DT̂q

h : h ∈ H}
defined by

U(DT̂p
h,DT̂q

T ∗
q h) = (DT̂p

T ∗
p h,DT̂q

h),

for all h ∈ H, is an isometry. In addition, if

dimDT̂i
< ∞,

for all i = p, q, then U extends to a unitary on DT̂p
⊕DT̂q

, which we denote again by U . This
implies the first part of the lemma below.

Lemma 3.2. If T ∈ T n
p,q(H) is a finite rank tuple, then there exists a unitary U ∈ B(DT̂p

⊕DT̂q
)

such that
U(DT̂p

h,DT̂q
T ∗
q h) = (DT̂p

T ∗
p h,DT̂q

h),

for all h ∈ H. Moreover, if

U =

[
A B
C D

]
: DT̂p

⊕DT̂q
→ DT̂p

⊕DT̂q
,

then

DT̂p
T ∗
p = ADT̂p

+
∞∑
i=0

BDiCDT̂p
T ∗i+1
q ,

where the series converges in the strong operator topology.

Proof. We only need to prove the second part. Let h ∈ H. Using

U(DT̂p
h,DT̂q

T ∗
q h) = (DT̂p

T ∗
p h,DT̂q

h),

we obtain [
A B
C D

] [
DT̂p

h

DT̂q
T ∗
q h

]
=

[
DT̂p

T ∗
p h

DT̂q
h

]
.

Then
DT̂p

T ∗
p h = ADT̂p

h+BDT̂q
T ∗
q h,

and
DT̂q

h = CDT̂p
h+DDT̂q

T ∗
q h.

Repeatedly resolving the former equation for DT̂p
T ∗
p h in the latter equation, we obtain

DT̂p
T ∗
p h = ADT̂p

h+
m∑
i=1

BDiCDT̂p
T ∗(i+1)
q h+BDm+1DT̂q

T ∗(m+2)
q h,

for all h ∈ H and m ≥ 1. The proof now follows from the fact that T ∗m
q h → 0 as m → ∞

and ∥D∥ ≤ 1. �
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The proof of the second half of Lemma 3.2, motivated by [13], will play an important role
in what follows.

Theorem 3.3. If T ∈ T n
p,q(H) is a finite rank tuple, then there exist an isometry Π : H →

H2
DT̂p

(Dn−1) and an inner function φ ∈ H∞
B(DT̂p

)(D) such that

ΠT ∗
i =


M∗

zi
Π if 1 ≤ i < p,

M∗
Φp
Π if i = p,

M∗
zi−1

Π if p < i ≤ n,

where
Φp(z) = φ(zq−1),

for all z ∈ Dn−1. In particular, T on H dilates to the n-tuple of commuting isometries

(Mz1 , . . . ,Mzp−1 ,MΦp ,Mzp , . . . ,Mzn−1)

on H2
DT̂p

(Dn−1).

Proof. Since T̂p ∈ Sn−1(H) is a pure contraction, we have

ΠT ∗
i =

{
M∗

zi
Π if 1 ≤ i < p,

M∗
zi−1

Π if p < i ≤ n,

where Π : H → H2
DT̂p

(Dn−1), defined by

(Πh)(z) =
∑

k∈Zn−1
+

zkDT̂p
T̂ ∗k
p h,

for z ∈ Dn−1 and h ∈ H, is the canonical isometry corresponding to T̂p (see Theorem 2.1).
We prove that

ΠT ∗
p = MΦpΠ,

for some one-variable (in zq−1) inner function Φp ∈ H∞
DT̂p

(Dn−1). To this end, consider h ∈ H,

η ∈ DT̂p
and k ∈ Zn−1

+ . Then

⟨ΠT ∗
p h,z

kη⟩ = ⟨
∑

l∈Zn−1
+

zlDT̂p
T̂ ∗l
p T ∗

p h, z
kη⟩

= ⟨DT̂p
T ∗
p T̂

∗k
p h, η⟩.

Next, consider the unitary

U =

[
A B
C D

]
: DT̂p

⊕DT̂q
→ DT̂p

⊕DT̂q

as in Lemma 3.2. Let
Φp(z) = τU∗(zq−1),

for all z ∈ Dn−1, where
τU∗(z) = A∗ + zC∗(IDT̂q

− zD∗)−1B∗,
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for all z ∈ D, is the transfer function corresponding to the unitary map U∗. Since dim DT̂p
<

∞, the equality (2.1) implies that τU is an inner multiplier on D. Also we compute

⟨M∗
Φp
Πh,zkη⟩ = ⟨Πh,Φp(z)(z

kη)⟩

= ⟨
∑

l∈Zn−1
+

zlDT̂p
T̂ ∗l
p h, (A∗ + C∗

∞∑
m=0

D∗mB∗zm+1
q−1 )zkη⟩

= ⟨DT̂p
T̂ ∗k
p h,A∗η⟩+

∞∑
m=0

⟨DT̂p
T̂ ∗k
p T ∗m+1

q h,C∗D∗mB∗η⟩

= ⟨ADT̂p
T̂ ∗k
p h, η⟩+

∞∑
m=0

⟨BDmCDT̂p
T̂ ∗k
p T ∗m+1

q h, η⟩

= ⟨(ADT̂p
+

∞∑
m=0

BDmCDT̂p
T ∗m+1
q )T̂ ∗k

p h, η⟩,

and so, by Lemma 3.2

⟨M∗
Φp
Πh,zkη⟩ = ⟨DT̂p

T ∗
p T̂

∗k
p h, η⟩.

Thus
ΠT ∗

p = M∗
Φp
Π.

This completes the proof. �
The discussion in Subsection 2.1 gives another way to describe the above dilation theorem:

If T ∈ T n
p,q(H), then T and

(PQMz1 |Q, . . . , PQMzp−1 |Q, PQMΦp |Q, PQMzp |Q, . . . , PQMzn−1 |Q)
on Q are jointly unitarily equivalent, where

Q = ran Π ⊆ H2
DT̂p

(Dn−1),

is a joint invariant subspace for

(M∗
z1
, . . . ,M∗

zp−1
,M∗

Φp
,M∗

zp , . . . ,M
∗
zn−1

).

A natural question arises about the isometric dilation: What can be said if the assumption
of finite dimensionality in Theorem 3.3 is removed? In the general case, the above ideas allow
one to prove that Φp is a contractive multiplier. We proceed as follows: Let DT̂p

or DT̂q
is an

infinite dimensional Hilbert space. Let D be an infinite dimensional Hilbert space such that
the isometry

U : {DT̂p
h⊕DT̂q

T ∗
q h : h ∈ H} ⊕ {0D} → {DT̂p

T ∗
p h⊕DT̂q

h : h ∈ H} ⊕ {0D}
defined by

U(DT̂p
h,DT̂q

T ∗
q h, 0D) = (DT̂p

T ∗
p h,DT̂q

h, 0D),

for h ∈ H, extends to a unitary, again denoted by U , on

DT̂p
⊕DT̂q

⊕D.
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Then the same conclusion as in Lemma 3.2 holds for the unitary

U =

[
A B
C D

]
∈ B(DT̂p

⊕ (DT̂q
⊕D)).

However, in this case, the transfer function τU∗ is a contractive analytic function. Then
following the same line of argument as in the proof of Theorem 3.3, we have:

Theorem 3.4. If T ∈ T n
p,q(H), then there exist an isometry Π : H → H2

DT̂p
(Dn−1) and a

contractive multiplier φ ∈ H∞
B(DT̂p

)(D) such that

ΠT ∗
i =


M∗

zi
Π if 1 ≤ i < p,

M∗
Φp
Π if i = p,

M∗
zi−1

Π if p < i ≤ n,

where Φp(z) = φ(zq−1) for all z ∈ Dn−1.

In Theorem 5.3 we present a sharper version of the above theorem: Every n-tuple in T n
p,q(H)

has an isometric dilation. This will require a completely different method. As is discussed in
the following sections, the finite rank assumption in Theorem 3.3 will turn out to be useful
for refined von Neumann inequality.

4. von Neumann inequality for finite rank tuples in T n
p,q(H)

In this section, we use the isometric dilations developed above to prove the von Neumann
inequality for finite rank tuples in T n

p,q(H).
First we recall the notion of completely non-unitary contractions [24]. A contraction T

on H is said to be completely non-unitary if there is no non-zero closed reducing subspace
S ⊆ H for T such that T |S is a unitary operator. This notion has proved to be useful in the
following sense: If T ∈ T 1(H), then there exists a unique decomposition H = Hu ⊕Hc of H
reducing T , such that T |Hu is unitary and T |Hc is completely non-unitary. We therefore have
the canonical decomposition of T as:

T =

[
T |Hu 0
0 T |Hc

]
.

We need first the following result noted in [13, Proposition 4.2].

Proposition 4.1. Let U =

[
A B
C D

]
be a unitary matrix on H⊕K and let A =

[
Au 0
0 Ac

]
∈

B(Hu ⊕ Hc) be the canonical decomposition of A into the unitary part Au on Hu and the

completely non-unitary part Ac on Hc. Then U ′ =

[
Ac B
C|Hc D

]
is a unitary operator on

Hc ⊕K and

τU(z) =

[
Au 0
0 τU ′(z)

]
∈ B(Hu ⊕Hc) (z ∈ D).
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Now we turn to the distinguished varieties in D2 [3]. Recall that a non-empty set V in C2

is a distinguished variety if there is a polynomial p ∈ C[z1, z2] such that

V = {(z1, z2) ∈ D2 : p(z1, z2) = 0},
and V exits the bidisc through the distinguished boundary, that is,

V ∩ ∂D2 = V ∩ (∂D× ∂D).
Here ∂D2 and ∂D × ∂D denote the boundary and the distinguished boundary of the bidisc
respectively, and V is the closure of V in D2. We denote by ∂V the set V ∩∂D2, the boundary
of V within the zero set of the polynomial p and D2.

In the seminal paper [3], Agler and McCarthy characterized distinguished varieties as fol-
lows: Let V ⊆ C2. Then V is a distinguished variety if and only if there exists a rational
matrix inner function Ψ ∈ H∞

B(Cm)(D), for some m ≥ 1, such that

V = {(z1, z2) ∈ D2 : det(Ψ(z1)− z2ICm) = 0}.
In the following result, we restrict ourselves to the case T n

1,2(H), for simplicity. The general
case can be dealt with using a similar argument.

Theorem 4.2. If T ∈ T n
1,2(H) is a finite rank operator, then there exists an algebraic variety

V in Dn
such that for all p ∈ C[z1, . . . , zn], the following holds:

∥p(T )∥ ≤ sup
z∈V

|p(z)|.

If, in addition, T1 is a pure contraction, then there exists a distinguished variety V ′ in D2

such that

V = V ′ × Dn−2 ⊆ Dn.

Proof. Let (MΦ1 ,Mz1 , . . . ,Mzn−1) on H2
DT̂1

(Dn−1) be the isometric dilation of T provided by

Theorem 3.3, where Φ1 ∈ H∞
B(DT̂1

)(D) is the inner multiplier given by

Φ1 = τU∗ ,

and

U∗ =

[
A∗ C∗

B∗ D∗

]
∈ B(DT̂1

⊕DT̂2
),

is the unitary as in Lemma 3.2. Let

A∗ =

[
A∗

u 0
0 A∗

c

]
∈ B(Du ⊕Dc),

be the canonical decomposition of A∗ on

DT̂1
= Du ⊕Dc,

into the unitary part A∗
u on Du and the completely non-unitary part A∗

c on Dc. If we set

U∗
c =

[
A∗

c C∗

B∗|Dc D∗

]
∈ B(Dc ⊕DT̂2

),
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then Proposition 4.1 implies that

Φ1(z) =

[
Φu(z) 0
0 Φc(z)

]
,

where
Φu(z) ≡ A∗

u,

and
Φc(z) = τU∗

c
,

for all z ∈ D. Let
Vu = {(z, w) ∈ D̄2 : det(zIDu − Φu(w)) = 0} × Dn−2

and
Vc = {(z, w) ∈ D2 : det(zIDc − Φc(w)) = 0} × Dn−2.

Since Φc ∈ H∞
B(Dc)

(D) is a rational matrix inner function (cf. page 138, [3]), the characteri-

zation result of distinguished varieties by Agler and McCarthy (Theorem 1.12 in [3]) implies
that

{(z, w) ∈ D2 : det(zIDc − Φc(w)) = 0},
is a distinguished variety in D2. Now let p ∈ C[z1, . . . , zn]. Since the discussion following
Theorem 3.3 implies that T on H and

(PQMΦ1 |Q, PQMz1 |Q, . . . , PQMzn−1 |Q),
on

(4.1) Q = ran Π ⊆ H2
DT̂1

(Dn−1),

are unitarily equivalent, it follows that

∥p(T )∥B(H) = ∥PQp(MΦ1 ,Mz1 , . . . ,Mzn−1)|Q∥B(Q),

and so
∥p(T )∥B(H) ≤ ∥p(MΦ1 ,Mz1 , . . . ,Mzn−1)∥B(H2

D
T̂1

(Dn−1)).

But

∥p(MΦ1 ,Mz1 , . . . ,Mzn−1)∥B(H2
D
T̂1

(Dn−1)) = ∥Mp(Φ1(z1),z1ID
T̂1

,...,zn−1ID
T̂1

)∥B(H2
D
T̂1

(Dn−1)),

and

∥Mp(Φ1(z1),z1ID
T̂1

,...,zn−1ID
T̂1

)∥B(H2
D
T̂1

(Dn−1)) ≤ ∥p(Φ1(z1), z1IDT̂1
, . . . , zn−1IDT̂1

)∥H∞
B(D

T̂1
)
(Dn−1).

Clearly, the right side is equal to

sup
θ1,...,θn−1

∥p(Φ1(e
iθ1), eiθ1IDT̂1

, . . . , eiθn−1IDT̂1
)∥B(DT̂1

).

Hence we have

∥p(T )∥B(H) ≤ sup
θ1,...,θn−1

∥p(Φ1(e
iθ1), eiθ1IDT̂1

, . . . , eiθn−1IDT̂1
)∥B(DT̂1

).
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Now for each θ1, . . . , θn−1, the orthogonal decomposition of

Φ1(e
iθ1) = Φu(e

iθ1)⊕ Φc(e
iθ1),

on DT̂1
= Du ⊕Dc applied to

p(Φ1(e
iθ1), eiθ1IDT̂1

, . . . , eiθn−1IDT̂1
) ∈ B(DT̂1

),

shows that

∥p(Φ1(e
iθ1), eiθ1IDT̂1

, . . . , eiθn−1IDT̂1
)∥B(DT̂1

) = max{∥p(Φu(e
iθ1), eiθ1IDu , . . . , e

iθn−1IDu)∥B(Du),

∥p(Φc(e
iθ1), eiθ1IDc , . . . , e

iθn−1IDc)∥B(Dc)}.
Note further that

∥p(Φs(e
iθ1), eiθ1IDs , . . . , e

iθn−1IDs)∥B(Ds) = sup
λ∈σ(Φs(eiθ1 ))

|p(λ, eiθ1 , . . . , eiθn−1)|,

for all s = u, c, and hence

∥p(Φ1(e
iθ1), eiθ1IDT̂1

, . . . , eiθn−1IDT̂1
)∥B(DT̂1

) ≤ sup
λ∈σ(Φu(eiθ1 ))∪σ(Φc(eiθ1 ))

|p(λ, eiθ1 , . . . , eiθn−1)|.

Consequently we have

∥p(T )∥B(H) ≤ sup
θ1,...,θn−1

{|p(λ, eiθ1 , . . . , eiθn−1)| : λ ∈ σ(Φu(e
iθ1)) ∪ σ(Φc(e

iθ1))}

= sup
z∈∂Vu∪∂Vc

|p(z)|,

and hence, by continuity
∥p(T )∥B(H) ≤ ∥p∥V ,

where
V = Vu ∪ Vc.

This proves the first part of the theorem. Assume now that T1 is a pure contraction. It is
enough to prove that Vu is an empty set. Since Φu(z) ≡ A∗

u, z ∈ D, and Au is a unitary on
Du, this is equivalent to proving that

Du = {0},
which is further equivalent to the condition that A∗ is completely non-unitary. First, we
observe that (see (4.1))

Q ⊆ H2
Dc
(Dn−1).

Indeed, let g ∈ H2
Du
(Dn−1), m ∈ Z+ and set gm = M∗m

Φu
g. Then

gm = A∗m
u g ∈ H2

Du
(Dn−1),

and
Mm

Φu
gm = g.

Now, if f ∈ Q, then clearly

⟨g, f⟩ = ⟨Mm
Φu
gm, f⟩

= ⟨gm, T ∗m
1 f⟩,
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and so

|⟨g, f⟩| ≤ ∥gm∥∥T ∗m
1 f∥

= ∥g∥∥T ∗m
1 f∥.

Since T1 is a pure contraction, it follows that

⟨g, f⟩ = 0,

and therefore Q ⊆ H2
Dc
(Dn−1). Finally, on the one hand, by the property of the isometric

dilation we have ∨
k∈Zn−1

+

Mk
zQ = H2

DT̂1

(Dn−1),

and on the other handH2
Dc
(Dn−1) ⊆ H2

DT̂1

(Dn−1) is a joint reducing subspace for (Mz1 , . . . ,Mzn−1).

Hence H2
Du
(Dn−1) = {0} and therefore Du = {0}. The theorem is proved. �

As we have pointed out before, the above von Neumann inequality for tuples in T n
p,q(H) is

finer and conceptually different (under the finite rank assumption) from the one obtained by
Grinshpan, Kaliuzhnyi-Verbovetskyi, Vinnikov and Woerdeman [18].

5. Dilations for tuples in T n
p,q(H)

In this section we again investigate dilations for tuples in T n
p,q(H). We prove the validity of

Statements 1* and 2 for tuples in T n
p,q(H) without any additional assumption on the defect

spaces DT̂p
and DT̂q

.

Recall that (see Equations (3.1) and (3.2)) for T ∈ T n(H), we denote

T̂p,q = (T1, . . . , Tp−1, Tp+1, . . . , Tq−1, Tq+1, . . . , Tn) ∈ T (n−2)(H),

the (n− 2)-tuple obtained from T by deleting Tp and Tq, and

T̂pq = (T1, . . . , Tp−1, TpTq︸︷︷︸
pth place

, Tp+1, . . . , Tq−1, Tq+1, . . . , Tn) ∈ T (n−1)(H),

the (n− 1)-tuple obtained from T by removing Tq and replacing Tp by the product TpTq. We
begin with a simple but important observation.

Lemma 5.1. If T ∈ T n
p,q(H), then T̂pq is a pure tuple and T̂pq ∈ Sn−1(H).

Proof. Since TpTq = TqTp and Tq is a pure contraction, it follows that TpTq is a pure contrac-

tion, and hence T̂pq is a pure tuple. On the other hand, by (3.3) we have

D2
T̂pq

= D2
T̂q

+ TpD
2
T̂p
T ∗
p ,

and therefore,

D2
T̂pq

≥ 0,

as T̂p, T̂q ∈ Sn−1(H). This completes the proof of the lemma. �
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Let E1 and E2 be two Hilbert spaces, and let

U =

[
A B
C 0

]
,

be a unitary operator on E1 ⊕ E2. Then the B(E1)-valued transfer function τU on D, defined
by (see Subsection 2.4)

τU(z) = A+ zBC,

satisfies the equality (see (2.1))

I − τU(z)
∗τU(z) = (1− |z|2)C∗C,

for all z ∈ D. In particular, τU ∈ H∞
B(E1)(D) is an inner function. Now if 1 ≤ p ≤ n and

Φ(z) = τU(zp),

for all z ∈ Dn, then Φ ∈ H∞
B(E1)(D

n) is an inner polynomial in zp of degree at most 1. This

point of view will be used in what follows to develop the dilation theory for tuples in T n
p,q(H).

We now proceed to give an explicit description of isometric dilations of tuples in T n
p,q(H).

Let T ∈ T n
p,q(H). Then, by the previous lemma, T̂pq ∈ Sn−1(H) ∩ T (n−1)(H) is a pure tuple.

Let

DT̂pq
= ran Sn−1(T̂pq, T̂

∗
pq),

and let Πpq : H → H2
DT̂pq

(Dn−1) be the canonical isometry corresponding to T̂pq (see Theorem

2.1). Then

(5.1) ΠpqR
∗
i = (Mzi ⊗ IDT̂pq

)∗Πpq,

for all i = 1, . . . , n− 1, where

Ri =

 Ti if 1 ≤ i < q, i ̸= p,
TpTq if i = p,
Ti+1 if q ≤ i ≤ n− 1.

In other words, (R1, . . . , Rn−1) = T̂pq, that is

(R1, . . . , Rn−1) = (T1, . . . , Tp−1, TpTq︸︷︷︸
pth place

, Tp+1, . . . , Tq−1, Tq+1, . . . , Tn),

on H dilates to

(Mz1 ⊗ IDT̂pq
, . . . ,Mzn−1 ⊗ IDT̂pq

),

on H2
DT̂pq

(Dn−1) via the canonical isometry Πpq : H → H2
DT̂pq

(Dn−1). Now let E be a Hilbert

space, and let V : DT̂pq
→ E be an isometry. Let

(5.2) ΠV,pq = (IH2(Dn−1) ⊗ V ) ◦ Πpq ∈ B(H, H2
E(Dn−1)).

Then ΠV,pq : H → H2
E(Dn−1) is an isometry and

(5.3) ΠV,pqR
∗
i = (Mzi ⊗ IE)

∗ΠV,pq,
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for all i = 1, . . . , n − 1. So T̂pq on H dilates to (Mz1 ⊗ IE , . . . ,Mzn−1 ⊗ IE) on H2
E(Dn−1) via

the isometry ΠV,pq. Now we are ready to prove the key lemma.

Lemma 5.2. Let H and E be Hilbert spaces, let T ∈ T n
p,q(H), and let V and ΠV,pq be as above.

Let F1 and F2 be bounded operators on H, and let Fi = ranFi, i = 1, 2. Let

Ui =

[
Ai Bi

Ci 0

]
: E ⊕ Fi → E ⊕Fi,

be a unitary operator, i = 1, 2. If

U1(V DT̂pq
h, F1T

∗
p T

∗
q h) = (V DT̂pq

T ∗
p h, F1h),

and

U2(V DT̂pq
h, F2T

∗
p T

∗
q h) = (V DT̂pq

T ∗
q h, F2h),

for all h ∈ H, then

ΠV,pqT
∗
p = M∗

Φ1
ΠV,pq,

and

ΠV,pqT
∗
q = M∗

Φ2
ΠV,pq,

where

Φi(z) = A∗
i + zpC

∗
i B

∗
i (z ∈ Dn−1),

is the B(E)-valued one variable transfer function of U∗
i , i = 1, 2. In particular, Φi ∈

H∞
B(E)(Dn−1), i = 1, 2, is an inner polynomial in zp of degree at most 1.

Proof. Because of the symmetric roles of Tp and Tq, we only prove that ΠV,pqT
∗
p = M∗

Φ1
ΠV,pq.

Let h ∈ H, k ∈ Zn−1
+ and let η ∈ E . Using the definition of Πpq, we have

⟨ΠV,pqT
∗
p h, z

k ⊗ η⟩ = ⟨(IH2(Dn−1) ⊗ V )ΠpqT
∗
p h,z

k ⊗ η⟩

= ⟨(IH2(Dn−1) ⊗ V )
∑

l∈Zn−1
+

zl ⊗DT̂pq
T̂ ∗l
pqT

∗
p h,z

k ⊗ η⟩

= ⟨V DT̂pq
T̂ ∗k
pq T

∗
p h, η⟩.

Also since

U1(V DT̂pq
h, F1T

∗
p T

∗
q h) = (V DT̂pq

T ∗
p h, F1h),

for h ∈ H, we find that

V DT̂pq
T ∗
p = A1V DT̂pq

+B1F1T
∗
p T

∗
q ,

and

F1 = C1V DT̂pq
.

Putting this together yields

V DT̂pq
T ∗
p = A1V DT̂pq

+B1C1V DT̂pq
T ∗
p T

∗
q ,
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and so

⟨M∗
Φ1
ΠV,pqh, z

k ⊗ η⟩ = ⟨ΠV,pqh,MΦ1(z
k ⊗ η)⟩

= ⟨(IH2(Dn−1) ⊗ V )
∑

l∈Zn−1
+

zl ⊗DT̂pq
T̂ ∗l
pqh, (A

∗
1 + zpC

∗
1B

∗
1)(z

k ⊗ η)⟩

= ⟨A1V DT̂pq
T̂ ∗kh, η⟩+ ⟨B1C1V DT̂pq

T̂ ∗k
pq T

∗
p T

∗
q h, η⟩

= ⟨V DT̂pq
T̂ ∗k
pq T

∗
p h, η⟩,

and thus ΠV,pqT
∗
p = M∗

Φ1
ΠV,pq as required. The final claim follows easily from the paragraph

following Lemma 5.1. This completes the proof of the lemma. �
Now we are ready to prove the main dilation result of this section.

Theorem 5.3. Let H be a Hilbert space, and let T = (T1, . . . , Tn) ∈ T n
p,q(H). Then there exist

a Hilbert space E and an isometry Π : H → H2
E(Dn−1) such that

ΠT ∗
i =


M∗

zi
Π if 1 ≤ i < q, i ̸= p,

M∗
Φi
Π if i = p, q,

M∗
zi−1

Π if q < i ≤ n,

where Φp and Φq in H∞
B(E)(Dn−1) are inner polynomials in zp of degree at most one and

Φp(z)Φq(z) = Φq(z)Φp(z) = zpIE ,

for all z ∈ Dn−1. In particular, (T1, . . . , Tn) ∈ T n
p,q(H) dilates to the isometric tuple

(Mz1 , . . . ,Mzp−1 ,MΦp ,Mzp+1 , . . . ,Mzq−1 ,MΦq ,Mzq , . . . ,Mzn−1),

on H2
E(Dn−1) via the isometry Π : H → H2

E(Dn−1).

Proof. Using the identity in (3.3), we have

D2
T̂pq

= D2
T̂q

+ TpD
2
T̂p
T ∗
p

= D2
T̂p

+ TqD
2
T̂q
T ∗
q ,

and then, for each h ∈ H, we have

∥DT̂pq
h∥2 = ∥DT̂q

T ∗
q h∥2 + ∥DT̂p

h∥2

= ∥DT̂q
h∥2 + ∥DT̂p

T ∗
p h∥2.

This implies that the map

U : {DT̂q
T ∗
q h,DT̂p

h : h ∈ H} → {DT̂q
h,DT̂p

T ∗
p h : h ∈ H},

defined by
(DT̂q

T ∗
q h,DT̂p

h) 7→ (DT̂q
h,DT̂p

T ∗
p h),

is a well-defined isometry. By adding, if necessary, an infinite dimensional Hilbert space D,
we extend U to a unitary map, again denoted by U , from D ⊕ DT̂q

⊕ DT̂p
onto itself. Then,

setting
E = D ⊕DT̂q

⊕DT̂p
,
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we have a unitary map U ∈ B(E) such that

U(0D, DT̂q
T ∗
q h,DT̂p

h) = (0D, DT̂q
h,DT̂p

T ∗
p h),

for all h ∈ H. The equality

∥DT̂pq
h∥2 = ∥DT̂q

h∥2 + ∥DT̂p
T ∗
p h∥2,

again implies that the map V : DT̂pq
→ E defined by

V (DT̂pq
h) = (0D, DT̂q

h,DT̂p
T ∗
p h),

for h ∈ H, is an isometry. Now by Lemma 5.1, it follows that T̂pq ∈ Sn−1(H) is a pure tuple.

Consider the canonical isometric map Πpq : H → H2
DT̂pq

(Dn−1) for T̂pq such that (5.1) holds.

Then as in (5.2), set

ΠV,pq = (IH2(Dn−1) ⊗ V ) ◦ Πpq ∈ B(H, H2
E(Dn−1)).

Therefore, the isometry ΠV,pq dilates T̂pq on H to (Mz1 ⊗ IE , . . . ,Mzn−1 ⊗ IE) on H2
E(Dn−1).

We now prove that

ΠV,pqT
∗
p = M∗

Φp
ΠV,pq,

and

ΠV,pqT
∗
q = M∗

Φq
ΠV,pq,

for some inner polynomials Φp,Φq ∈ H∞
B(E)(Dn−1) in zp variable and of degree at most one and

Φp(z)Φq(z) = Φq(z)Φp(z) = zpIE ,

for all z ∈ Dn−1. To this end, let ιp : DT̂p
↪→ E and ιq : D ⊕DT̂q

↪→ E be the inclusion maps
defined by

ιp(hp) = (0, 0, hp),

and

ιq(h, hq) = (h, hq, 0),

for all hp ∈ DT̂p
, hq ∈ DT̂q

and h ∈ D. Let Pp be the orthogonal projection of E onto DT̂p
.

Since [
Pp ιq
ι∗q 0

]
: E ⊕ (D ⊕DT̂q

) → E ⊕ (D ⊕DT̂q
),

is a unitary, it follows that

U1 =

[
U 0
0 I

] [
Pp ιq
ι∗q 0

]
,

is a unitary operator on E ⊕ (D ⊕DT̂q
). Clearly

U1 =

[
UPp Uιq
ι∗q 0

]
.
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We now prove that the unitary U1 satisfies the condition of Lemma 5.2. Let h ∈ H. Then

U1(V DT̂pq
h, 0D, DT̂q

T ∗
p T

∗
q h) = U1(0D, DT̂q

h,DT̂p
T ∗
p h, 0D, DT̂q

T ∗
p T

∗
q h)

= (U(0D, DT̂q
T ∗
p T

∗
q h,DT̂p

T ∗
p h), 0D, DT̂q

h)

= (0D, DT̂q
T ∗
p h,DT̂p

T ∗2
p h, 0D, DT̂q

h)

= (V DT̂pq
T ∗
p h, 0D, DT̂q

h).

Similarly, if we consider the unitary

U2 =

[
P⊥
p ιp
ι∗p 0

] [
U∗ 0
0 I

]
,

on E ⊕ DT̂p
, then, again using the fact that

U2 =

[
P⊥
p U∗ ιp
ι∗pU

∗ 0

]
,

it follows that

U2(V DT̂pq
h,DT̂p

T ∗
p T

∗
q h) = (V DT̂pq

T ∗
q h,DT̂p

h),

for all h ∈ H. Therefore by Lemma 5.2, we have ΠV,pqT
∗
p = M∗

Φp
ΠV,pq and ΠV,pqT

∗
q = M∗

Φq
ΠV,pq,

where

Φp(z) = (Pp + zpP
⊥
p )U∗,

and

Φq(z) = U(P⊥
p + zpPp),

for all z ∈ Dn−1, are the transfer functions corresponding to the unitaries U∗
1 and U∗

2 respec-
tively. Also we have

Φp(z)Φq(z) = Φq(z)Φp(z) = zpIE ,

for all z ∈ Dn−1. This completes the proof of the theorem. �

Some remarks on the above dilation result are now in order.
Remark 1: For the base case n = 3, a closely related result to Theorem 5.3 was obtained

in [14] as follows: Let (T1, T2, T3) ∈ T 3(H), and let T3 = T1T2 be a pure contraction. Then
(T1, T2, T3) on H dilates to (MΦ1 ,MΦ2 ,Mz) on H2

E(D) where E is a Hilbert space, Φ1,Φ2 ∈
H∞

B(E)(D) are inner polynomials of degree ≤ 1, and

Φ1(z)Φ2(z) = Φ2(z)Φ1(z) = zIE ,

for all z ∈ D. Here (MΦ1 ,MΦ2) is a Berger, Coburn and Lebow pair of commuting isometries
[8]. Our approach to Theorem 5.3 is partially motivated by the above result. More specifically,
in Theorem 5.3, the isometric pair (MΦp ,MΦq) is a one variable (in zp) Berger, Coburn and
Lebow pair of commuting isometries on H2

E(Dn−1) in the following sense:

Φp(z)Φq(z) = Φq(z)Φp(z) = zpIE ,

for all z ∈ Dn−1.
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Remark 2: Let E be a Hilbert space, and let (Mφ1 ,Mφ2) be a Berger, Coburn and Lebow
pair of commuting isometries on H2

E(D), that is, φ1 and φ2 be two inner functions in H∞
B(E)(D)

and
φ1(z)φ2(z) = φ2(z)φ1(z) = zIE ,

for all z ∈ D. For 1 ≤ p < q ≤ n, define Φp(z) = φ1(zp) and Φq(z) = φ2(zp), z ∈ Dn−1. Then
Φp and Φq in H∞

B(E)(Dn−1) are inner polynomials in zp of degree at most one, and

Φp(z)Φq(z) = Φq(z)Φp(z) = zpIE ,

for all z ∈ Dn−1. Let Q be a joint invariant subspace for

(M∗
z1
, . . . ,M∗

zp−1
,M∗

Φp
,M∗

zp+1
, . . . ,M∗

zq−1
,M∗

Φq
,M∗

zq , . . . ,M
∗
zn−1

),

and let

Ti =

 PQMzi|Q if 1 ≤ i < q, i ̸= p,
PQMΦi

|Q if i = p, q,
PQMzi−1

|Q if q < i ≤ n.

It is then easy to see that (T1, . . . , Tn) ∈ T n
p,q(Q). Therefore

(Mz1 , . . . ,Mzp−1 ,MΦp ,Mzp+1 , . . . ,Mzq−1 ,MΦq ,Mzq , . . . ,Mzn−1),

is the model n-tuple of isometries for n-tuples of commuting contractions in T n
p,q(H).

Remark 3: The previous remark gives a list of non-trivial examples of n-tuples of operators
in T n

p,q(H). Also observe that if T ∈ T n(H) is doubly commuting, that is, T ∗
i Tj = TjT

∗
i for

all 1 ≤ i < j ≤ n, then

S−1
n−1(T̂p, T̂

∗
p ) =

∏
i̸=p

(IH − TiT
∗
i ),

for all p ∈ {1, . . . , n}. Hence, if T ∈ T n(H) is a doubly commuting pure tuple, then T ∈
T n
p,q(H) for any 1 ≤ p < q ≤ n. We refer to [18] for examples of n-tuples of operators in

T n
p,q(H).
We conclude by recording the von Neumann inequality for tuples in T n

p,q(H). The proof
follows easily, as pointed out earlier (see the introduction), from the dilation result, Theorem
5.3.

Theorem 5.4. If T ∈ T n
p,q(H), then for all p ∈ C[z1, . . . , zn], the following holds:

∥p(T )∥B(H) ≤ sup
z∈Dn

|p(z)|.

Note that the above von Neumann inequality generalizes the one considered by Grinshpan,
Kaliuzhnyi-Verbovetskyi, Vinnikov and Woerdeman [18] to a large class of tuples in T n(H)
(see Subsection 2.3).
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